Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Discov Today ; 27(6): 1671-1678, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35182735

RESUMO

Here, we propose a broad concept of 'Clinical Outcome Pathways' (COPs), which are defined as a series of key molecular and cellular events that underlie therapeutic effects of drug molecules. We formalize COPs as a chain of the following events: molecular initiating event (MIE) â†’ intermediate event(s) â†’ clinical outcome. We illustrate the concept with COP examples both for primary and alternative (i.e., drug repurposing) therapeutic applications. We also describe the elucidation of COPs for several drugs of interest using the publicly accessible Reasoning Over Biomedical Objects linked in Knowledge-Oriented Pathways (ROBOKOP) biomedical knowledge graph-mining tool. We propose that broader use of COP uncovered with the help of biomedical knowledge graph mining will likely accelerate drug discovery and repurposing efforts.


Assuntos
Reposicionamento de Medicamentos , Bases de Conhecimento , Descoberta de Drogas , Conhecimento
2.
Artigo em Inglês | MEDLINE | ID: mdl-35935266

RESUMO

Eye irritation and corrosion are fundamental considerations in developing chemicals to be used in or near the eye, from cleaning products to ophthalmic solutions. Unfortunately, animal testing is currently the standard method to identify compounds that cause eye irritation or corrosion. Yet, there is growing pressure on the part of regulatory agencies both in the USA and abroad to develop New Approach Methodologies (NAMs) that help reduce the need for animal testing and address unmet need to modernize safety evaluation of chemical hazards. In furthering the development and applications of computational NAMs in chemical safety assessment, in this study we have collected the largest expertly curated dataset of compounds tested for eye irritation and corrosion, and employed this data to build and validate binary and multi-classification Quantitative Structure-Activity Relationships (QSAR) models that can reliably assess eye irritation/corrosion potential of novel untested compounds. QSAR models were generated with Random Forest (RF) and Multi-Descriptor Read Across (MuDRA) machine learning (ML) methods, and validated using a 5-fold external cross-validation protocol. These models demonstrated high balanced accuracy (CCR of 0.68-0.88), sensitivity (SE of 0.61-0.84), positive predictive value (PPV of 0.65-0.90), specificity (SP of 0.56-0.91), and negative predictive value (NPV of 0.68-0.85). Overall, MuDRA models outperformed RF models and were applied to predict compounds' irritation/corrosion potential from the Inactive Ingredient Database, which contains components present in FDA-approved drug products, and from the Cosmetic Ingredient Database, the European Commission source of information on cosmetic substances. All models built and validated in this study are publicly available at the STopTox web portal (https://stoptox.mml.unc.edu/). These models can be employed as reliable tools for identifying potential eye irritant/corrosive compounds.

3.
PLoS Comput Biol ; 14(10): e1006515, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30346968

RESUMO

The development of novel therapeutics is urgently required for diseases where existing treatments are failing due to the emergence of resistance. This is particularly pertinent for parasitic infections of the tropics and sub-tropics, referred to collectively as neglected tropical diseases, where the commercial incentives to develop new drugs are weak. One such disease is schistosomiasis, a highly prevalent acute and chronic condition caused by a parasitic helminth infection, with three species of the genus Schistosoma infecting humans. Currently, a single 40-year old drug, praziquantel, is available to treat all infective species, but its use in mass drug administration is leading to signs of drug-resistance emerging. To meet the challenge of developing new therapeutics against this disease, we developed an innovative computational drug repurposing pipeline supported by phenotypic screening. The approach highlighted several protein kinases as interesting new biological targets for schistosomiasis as they play an essential role in many parasite's biological processes. Focusing on this target class, we also report the first elucidation of the kinome of Schistosoma japonicum, as well as updated kinomes of S. mansoni and S. haematobium. In comparison with the human kinome, we explored these kinomes to identify potential targets of existing inhibitors which are unique to Schistosoma species, allowing us to identify novel targets and suggest approved drugs that might inhibit them. These include previously suggested schistosomicidal agents such as bosutinib, dasatinib, and imatinib as well as new inhibitors such as vandetanib, saracatinib, tideglusib, alvocidib, dinaciclib, and 22 newly identified targets such as CHK1, CDC2, WEE, PAKA, MEK1. Additionally, the primary and secondary targets in Schistosoma of those approved drugs are also suggested, allowing for the development of novel therapeutics against this important yet neglected disease.


Assuntos
Biologia Computacional/métodos , Reposicionamento de Medicamentos/métodos , Inibidores de Proteínas Quinases/farmacologia , Schistosoma/efeitos dos fármacos , Esquistossomicidas/farmacologia , Animais , Bases de Dados de Proteínas , Reprodutibilidade dos Testes
4.
Drug Discov Today ; 23(11): 1833-1847, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29935345

RESUMO

Despite the recent outbreak of Zika virus (ZIKV), there are still no approved treatments, and early-stage compounds are probably many years away from approval. A comprehensive A-Z review of the recent advances in ZIKV drug discovery efforts is presented, highlighting drug repositioning and computationally guided compounds, including discovered viral and host cell inhibitors. Promising ZIKV molecular targets are also described and discussed, as well as targets belonging to the host cell, as new opportunities for ZIKV drug discovery. All this knowledge is not only crucial to advancing the fight against the Zika virus and other flaviviruses but also helps us prepare for the next emerging virus outbreak to which we will have to respond.


Assuntos
Antivirais/farmacologia , Descoberta de Drogas , Terapia de Alvo Molecular/métodos , Infecção por Zika virus/tratamento farmacológico , Zika virus/efeitos dos fármacos , Antivirais/química , Antivirais/uso terapêutico , Humanos , Modelos Biológicos , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...